Preparation of Curcumin Solid Lipid Nanoparticles Loaded with Flower-Shaped Lactose for Lung Inhalation and Preliminary Evaluation of Cytotoxicity In Vitro

Author:

Li Nan1,Li Xu2,Cheng Peng3,Yang Ping1,Shi Pengcheng4,Kong Lingyu1ORCID,Liu Hongbin3ORCID

Affiliation:

1. Pharmaceutical Analysis Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China

2. Cardiovascular and Cerebrovascular Drugs Research and Development Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China

3. Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China

4. Oncology Drug R&D Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China

Abstract

The purpose of this study is to design a flower-shaped lactose loaded curcumin solid lipid nanoparticles dry powder inhaler and characterize it to improve the solubility and dissolution rate of curcumin in lung. Curcumin solid lipid nanoparticles (Cur-SLNs) were prepared by solvent evaporation method, and then they were micronized by freeze-drying technology. Finally, Cur-SLN micropowder obtained by freeze-drying was mixed with flower-shaped lactose (FL) at a ratio of 2 : 1 and then passed through a 200-mesh sieve to obtain Cur-SLN-FL powder. Tween-80 was selected as the surfactant to inhibit the aggregation of drug solid lipid nanoparticles. Under the optimum conditions, the solid lipid nanoparticles (SLN) were relatively spherical, with an average particle size of 14.7 nm, narrow distribution, Zeta potential of −22.5 mV, encapsulation efficiency of 90.21%, and drug loading of 8.56%. According to the particle size, PI, Zeta potential, drug loading (LC%), encapsulation efficiency (EE%), morphology, and in vitro release characteristics, the prescription of solid lipid nanoparticles was screened. Dry powder inhaler (DPI) was characterized by differential scanning calorimetry, scanning electron microscopy, particle size, density, and in vitro release performance. Its cytotoxicity to mouse fibroblasts (L929) and human normal lung epithelial cells (BEAS-2B) in vitro was investigated, and its safety for pulmonary inhalation was preliminarily determined. FTIR analysis shows that the micronized Cur-SLN-FL has the same chemical structure as FL. FTIR and DSC analysis confirmed that the characteristic absorption peak of curcumin was not found in Cur-SLN-FL, showing similar structure to SLN and FL. In addition, curcumin was coated in solid lipid nanoparticles to make powder mist, which increased its drug loading, kept its aerodynamic particle size (4.03 ± 0.40) μm, and significantly improved its drug release performance in artificial lung fluid. In vitro cytotoxicity test results confirmed that Cur-SLN-FL was less toxic to BEAS-2B cells than L929 cells. Therefore, curcumin was prepared into solid lipid nanoparticles by emulsion evaporation-low temperature solidification method and then micronized and mixed with FL to prepare curcumin solid lipid nanoparticle powder mist loaded with flower-shaped lactose. The process is simple and feasible, and it has better safety performance for lung cells, which is expected to become a safe and effective delivery system for pulmonary inhalation drugs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3