Affiliation:
1. Liaoning Huading Technology Co., Ltd., Shenyang, Liaoning 110167, China
2. JiangSu PangPu Network Technology Co., Ltd., JiangSu, China
3. Baidu.com Times Technology (Beijing) Co., Ltd., Beijing, China
Abstract
In this paper, we propose a novel method, an adaptive localizing region-based level set using convolutional neural network, for improving performance of maxillary sinus segmentation. The healthy sinus without lesion inside is easy for conventional algorithms. However, in practice, most of the cases are filled with lesions of great heterogeneity which lead to lower accuracy. Therefore, we provide a strategy to avoid active contour from being trapped into a nontarget area. First, features of lesion and maxillary sinus are studied using a convolutional neural network (CNN) with two convolutional and three fully connected layers in architecture. In addition, outputs of CNN are devised to evaluate possibilities of zero level set location close to lesion or not. Finally, the method estimates stable points on the contour by an interactive process. If it locates in the lesion, the point needs to be paid a certain speed compensation based on the value of possibility via CNN, assisting itself to escape from the local minima. If not, the point preserves current status till convergence. Capabilities of our method have been demonstrated on a dataset of 200 CT images with possible lesions. To illustrate the strength of our method, we evaluated it against state-of-the-art methods, FLS and CRF-FCN. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better compared with currently available methods and obtained a significant Dice improvement, 0.25 than FLS and 0.12 than CRF-FCN, respectively, on an average.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献