High-Performance Biocomposite Polyvinyl Alcohol (PVA) Films Modified with Cellulose Nanocrystals (CNCs), Tannic Acid (TA), and Chitosan (CS) for Food Packaging

Author:

Tan Ruowen1,Li Feng2,Zhang You1,Yuan Zihui1,Feng Xuefei3,Zhang Wansong1,Liang Ting1,Cao Jiwen1,De Hoop Cornelis F.4,Peng Xiaopeng5ORCID,Huang Xingyan1ORCID

Affiliation:

1. College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China

2. Landscape Architecture School, Chengdu Agricultural College, Chengdu, Sichuan 611130, China

3. Department of Stomatology, North Sichuan Medical University, Nanchong 637007, China

4. School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA

5. State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Abstract

Polyvinyl alcohol (PVA) has been widely applied in industries for its low cost, nontoxicity, biodegradability, and renewable advantages. However, its unstable structure may not meet some strong physical and mechanical needs. In order to enhance the performances of the PVA film, cellulose nanocrystals (CNCs), tannic acid (TA), and chitosan (CS), working as a reinforcer, a crosslinker, and an antimicrobial agent, respectively, were introduced into the PVA matrix. The results indicated that CNCs, TA, and CS were evenly distributed and cohesively incorporated within the PVA matrix, which contributed to the good mechanical properties and thermal stabilities of biocomposite PVA films. Besides, the addition of TA remarkably improved the antiultraviolet and antioxidant capabilities of PVA films, although the light transmittance declined slightly. It was also observed that the pure PVA film and PVA reinforced with CNCs were incapable of protecting against bacteria, while the ones with CS had prominent antibacterial properties to Escherichia coli and Staphylococcus aureus. Overall, the resulting film presented a high potential utilization as a food packaging material for its outstanding physical and mechanical performances.

Funder

Sichuan Agricultural University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3