Moxifloxacin Induced Liver Injury by Causing Lachnospiraceae Deficiency and Interfering with Butyric Acid Production through Gut–Liver Axis

Author:

Sun Yuan1,Cong Ling1,Yang Song1,Zhao Rui1,An Zhuoling1ORCID,Liu Lihong1ORCID

Affiliation:

1. Pharmacy Department of Beijing Chao–Yang Hospital, Capital Medical University, Beijing 100020, China

Abstract

Cases of unpredictable, idiosyncratic liver damage of moxifloxacin (MXF) have been occasionally reported. However, the health effects of MXF exposure remain controversial. The current study examined the metabolic phenotypes and intestinal flora characteristics of hepatotoxicity induced by MXF. Rats were administered moxifloxacin hydrochloride tablets at doses of 36, 72, and 108 mg/kg body weight/day for 21 days. The levels of tricarboxylic acid cycle intermediates were decreased, whereas those of lipids (arachidonic acid, hexadecanoic acid, and linoleic acid) were increased, reflecting disorders of energy–related and lipid metabolism. Enrichment analysis of the differential metabolites suggested that butanoate metabolism was associated with MXF–induced liver injury. 16S rRNA sequencing uncovered that the diversity of gut intestinal was decreased in MXF–treated rats. Specifically, the abundance of Muribaculaceae was increased, whereas that of Lachnospiraceae, a family of butyrate–producing bacteria, was decreased. The combined serum metabonomics and gut microbiome datasets illustrated the involvement of butanoic acid and energy metabolism in the regulatory changes of the gut–liver axis associated with MXF–induced liver injury. The regulation of endogenous small molecules and intestinal flora during drug–induced liver injury was first described from the perspective of the gut–liver axis, providing a research basis for the mechanism of clinical drug–induced liver injury.

Funder

1351 Talents Program of Beijing Chao–Yang Hospital

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3