MTMR14 Alleviates Chronic Obstructive Pulmonary Disease as a Regulator in Inflammation and Emphysema

Author:

Gu Yiya1ORCID,Chen Jinkun2,Huang Qian1ORCID,Zhan Yuan1ORCID,Wang Ting1ORCID,Wu Jixing1ORCID,Zhao Jianping1ORCID,Zeng Zhilin3ORCID,Lv Yongman4,Xiao Chengfeng5ORCID,Xie Jungang1ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China

2. Department of Science, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada

3. Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China

4. Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China

5. Department of Biology, Queen’s University, Kingston, Ontario, K7L 3N6, Canada

Abstract

Extensive inflammation and apoptosis in structural cells of the lung are responsible for the progression and pathogenesis of chronic obstructive pulmonary disease (COPD). Myotubularin-related protein 14 (MTMR14) has been shown to participate in various biological processes, including apoptosis, inflammation, and autophagy. Nonetheless, the role of MTMR14 in COPD remains elusive. In the present study, we explored the expression of MTMR14 in human lung tissues and investigated the effects of overexpressed MTMR14 on in vitro and in vivo COPD models. Moreover, one of the possible mechanisms of MTMR14 alleviating COPD was explored based on mitochondrial function and mitophagy homeostasis. The results showed that MTMR14 expression was reduced in COPD patients’ lungs in comparison to control subjects. MTMR14 overexpression inhibited cigarette smoke extract-induced inflammation and apoptosis and improved mitochondrial function and mitophagy in vitro. Further verification was carried out in COPD model mice. MTMR14 overexpression inhibited lung inflammation and reduced levels of IL-6 and KC in bronchoalveolar lavage fluid, as well as prevented emphysema and a decline in lung function. Furthermore, MTMR14 overexpression improved mitochondrial function and mitophagy to a certain extent. Collectively, our data support the hypothesis that MTMR14 participates in the pathogenesis of COPD. Improving mitochondrial function and mitophagy homeostasis may be one of the mechanisms by which MTMR14 alleviates COPD and may potentially be a novel therapeutic target for COPD.

Funder

Health and Family Planning Research Project of Hubei

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3