Construction of English Translation Model Based on Neural Network Fuzzy Semantic Optimal Control

Author:

Zhang Bingjie1ORCID,Liu Yiming2

Affiliation:

1. School of English Language and Culture, Xi’an Fanyi University, Xi’an, Shaanxi 710105, China

2. School of Foreign Languages, Xidian University, Xi’an, Shaanxi 710126, China

Abstract

This work addresses four aspects of the English translation model: consistency, model structure, semantic understanding, and knowledge fusion. To solve the problem of lack of personality consistency in the responses generated by neural networks in English translation models, an English translation model with fuzzy semantic optimal control of neural networks is proposed in this study. The model uses a fuzzy semantic optimal control retrieval mechanism to obtain appropriate information from an externally set English information table; to further improve the effectiveness of the model in retrieving correct information, this work adopts a two-stage training method, using ordinary English translation data for model pretraining and then fine-tuning the model using English translation data with optimal control containing fuzzy semantic information. The model consists of two parts, a sequence generation network that can output the probability distribution of words and an evaluation network that can predict future whole-sentence returns. In particular, the evaluation network can evaluate the impact of currently generated words on whole sentences using deep inheritance features so that the model can consider not only the optimal solution for the current words, as in other generative models, but also the optimal solution for future generated whole sentences. The experimental results show that the English translation model with fuzzy semantic optimal control of the neural network proposed in this study can obtain better semantic feature representation by using a novel bidirectional neural network and a masked language model to train sentence vectors; the combination of semantic features and fuzzy semantic similarity features can obtain higher scoring accuracy and better model generalization. In English translation applications, there are large improvements in scoring accuracy and generality.

Funder

2020 School Level Project of Xi’an Fanyi University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3