The Fusion of Infrared and Visible Images via Feature Extraction and Subwindow Variance Filtering

Author:

Feng XinORCID,Gong HaifengORCID

Abstract

This paper presents a subwindow variance filtering algorithm for fusing infrared and visible light images, with the goal of addressing challenges related to blurred details, low contrast, and missing edge features. First, images to be fused are subjected to multilevel decomposition using a subwindow variance filter, resulting in corresponding base and multiple detail layers. PCANet extracts features from the base layer and obtains corresponding weight maps that guide the fusion process. A saliency measurement method is proposed for detail‐level fusion to extract saliency maps from the source image. The saliency maps should be compared in order to obtain the initial weight map, which is then optimized using guided filtering technology to guide the fusion of detail layers. Finally, the information of the base layer and the detail layer after fusion is superimposed to obtain an ideal fusion result. The proposed algorithm is evaluated through subjective and objective measures, including information entropy, mutual information, multiscale structural similarity measurement, standard deviation, and visual information fidelity. The results demonstrate that the proposed algorithm achieves rich detail information, high contrast, and good edge information retention, making it a promising approach for infrared and visible image fusion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Wiley

Reference21 articles.

1. Near-infrared and visible dual channel sensor information fusion;Shen Y.;Spectroscopy and Spectral Analysis,2019

2. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network

3. Deep learning for pixel-level image fusion: Recent advances and future prospects

4. Dual-scale decomposition and saliency analysis based infrared and visible image fusion;Huo X.;Journal of Image and Graphics,2021

5. Infrared and visible light image fusion based on Tetrolet framework;Feng X.;Acta Photonica Sinica,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3