Analysis of Multifactor-Driven Myopia Disease Modules to Guide Personalized Treatment and Drug Development

Author:

Liu Shiliang1,Li Fei1ORCID

Affiliation:

1. Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China

Abstract

Myopia is recognized as a multifactor, multicascade complex disease. However, people still know little about the pathogenesis of myopia. Therefore, we aim to guide the personalized treatment, drug research, and development of myopia. Here, based on the interaction network of myopia-related genes, this study constructed a multifactor-driven myopia disease module map. We first identified differentially expressed (DE) miRNAs in myopia. Then, we constructed a myopia-related protein interaction network targeted by these DE miRNAs. Further, we clustered the network into modules and identified module-driven factors, including ncRNAs and transcription factors. Especially, miR-16-5p and miR-34b-5p significantly differentially expressed drive the pathogenic module to influence the progression of myopia. At the same time, transcription factors were involved in myopia-related functions and pathways by regulating the expression of genes in modules, such as Ctnnb1, Myc, and Notch1. In addition, we identified 43 genes in modules that played key roles in the development and progression of myopia such as Vamp2, Egfr, and Wasl. Finally, we constructed a comprehensive multifactor-driven myopia pathogenic module landscape and predicted potential drug and drug targets for myopia. In general, our work not only provided candidates for biological experiments which laid the foundation for the in-depth study of myopia but also has a high reference value for the personalized treatment of myopia and drug development.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3