Evaluation of Biomechanical and Chemical Properties of Gamma-Irradiated Polycaprolactone Microfilaments for Musculoskeletal Tissue Engineering Applications

Author:

Rojas-Rojas Laura12ORCID,Ulloa-Fernández Andrea3ORCID,Castro-Piedra Silvia3ORCID,Vargas-Segura Walter24ORCID,Guillén-Girón Teodolito1ORCID

Affiliation:

1. Material Science School, Technological Institute of Costa Rica, Cartago, Costa Rica

2. Physics School, Technological Institute of Costa Rica, Cartago, Costa Rica

3. Biology School, Technological Institute of Costa Rica, Cartago, Costa Rica

4. Radiotheraphy Department, Hospital Mexico, San José, Costa Rica

Abstract

An appropriate and reliable sterilization technique is crucial for tissue engineering scaffolds. Skeletal muscle scaffolds are often fabricated using microfilaments of a wide variety of polymers. One method for sterilization is 25 kGy of gamma irradiation. In addition, sterilization through irradiation should administer a dose within a specific range. Radiation directly affects the chemical and mechanical properties of scaffolds. The accuracy and effects of irradiation are often not considered during sterilization procedures; however, these are important since they provide insight on whether the sterilization procedure is reliable and reproducible. This study focused on the chemical and mechanical characterization of 25 kGy gamma-irradiated scaffold. The accuracy and uncertainty of the irradiation procedure were also obtained. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were performed to determine whether the crystallinity of the polymer changed after irradiation and whether gamma rays influenced its thermal properties. The tensile parameters of the microfilaments were analyzed by comparing irradiated and nonirradiated scaffolds to determine whether gamma radiation changed their elastic behavior. Dose distribution and uncertainty were recorded with several dosimeters. The results showed that the irradiation process slightly affected the mechanical parameters of the scaffold; however, it did not modify its crystallinity or thermal properties. The irradiation was uniform, since the measured uncertainty was low. The scaffold was pathogen-free after 7 days; this meant sterilization was achieved. These results indicated that gamma-sterilized scaffolds were a promising material for use as a skeletal muscle analog material for tissue-engineering applications because they can be sterilized with gamma rays without changing their chemical structure and mechanical properties. This study provided the dose distribution measurement and uncertainty calculations for the sterilization procedure.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3