Toward Recognition of Easily Confused TCM Herbs on the Smartphone Using Hierarchical Clustering Convolutional Neural Network

Author:

Lan Kun-Chan1ORCID,Tsai Tzu-Hao1ORCID,Hu Min-Chun2,Weng Juei-Chun1,Zhang Jun-Xiang1,Chang Yuan-Shiun3

Affiliation:

1. The Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan

2. The Department of Computer Science and Information Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan

3. The Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan

Abstract

Background and Objective. The use of Chinese herbal medicines (CHMs) for treatment plays an important role in traditional Chinese medicine (TCM). However, some herbs are easily confused with the others because their shapes/textures look similar and they could have totally different utilities. Recently, deep learning has attracted great attention for the application of image recognition and could be useful for TCM herb identification. Methods. For recognizing easily-confused TCM herbs on a smartphone, we propose a CHM recognition system using hierarchical clustering convolutional neural networks (HCNNs) based on the affinity propagation clustering method. Results. We implement our system on the smartphone and show recognition accuracy close to 98%, based on a dataset of 65 kinds of herbs (including 12 easy-confused herbs pairs). We also investigate the effect of different parameters (e.g., selection of clustering algorithms for HCNNs, types of smartphone, and number of layers in the neural network) on the system performance. Conclusions. In this work, we proposed a hierarchical clustering convolutional neural network (HCNN) method to distinguish similar TCM herbs with a high accuracy. We also showed the usefulness of applying the data augmentation techniques when implementing the proposed system for a variety of smartphones.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3