A Novel Model for Anomaly Detection in Network Traffic Based on Support Vector Machine and Clustering

Author:

Ma Qian12ORCID,Sun Cong3ORCID,Cui Baojiang12ORCID

Affiliation:

1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China

2. National Engineering Laboratory for Mobile Network Technologies, Beijing, China

3. School of Science, Beijing University of Posts and Telecommunications, Beijing, China

Abstract

New vulnerabilities and ever-evolving network attacks pose great threats to today’s cyberspace security. Anomaly detection in network traffic is a promising and effective technique to enhance network security. In addition to traditional statistical analysis and rule-based detection techniques, machine learning models are introduced for intelligent detection of abnormal traffic data. In this paper, a novel model named SVM-C is proposed for the anomaly detection in network traffic. The URLs in the network traffic log are transformed into feature vectors via statistical laws and linear projection. The obtained feature vectors are fed into a support vector machine (SVM) classifier and classified as normal or abnormal. Based on the idea of SVM and clustering, we construct an optimization model to train the parameters of the feature extraction method and traffic classifier. Numerical tests indicate that the proposed model outperforms the state of the arts on all the tested datasets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference38 articles.

1. A data mining framework for building intrusion detection models;W. Lee

2. Learning rules for anomaly detection of hostile network traffic

3. Service specific anomaly detection for network intrusion detection

4. Information-theoretic measures for anomaly detection;W. Lee

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3