GreenLink: An Energy Efficient Scatternet Formation for BLE Devices

Author:

Wang Xiaoliang12ORCID,Xu Ke12ORCID,Mao Bo3ORCID

Affiliation:

1. Department of Computer Science and Technology, Tsinghua University, China

2. Tsinghua National Laboratory for Information Science and Technology, Beijing, China

3. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, China

Abstract

Formation technology of Bluetooth scatternet has been researched for over a decade and promoted by rapid development of wearable computing. Limited by technical features, the traditional scatternet formation technology has not been widely used in real commercial chipsets. As new features are introduced into the Bluetooth core field, the ability to use Bluetooth Low Energy (BLE) technology to construct a network becomes the reality and puts forward new challenges. The scatternet formation technology facing to BLE and wearable devices requires significant improvement in energy efficiency. According to our experiments, 92% of the system energy consumption can be attributed to central nodes. In this paper, we presented a Bluetooth scatternet formation technology focused on energy efficiency, GreenLink, which minimizes the amount of central nodes by enhancing system aggregation degree to ensure excellent energy-saving performance. Meanwhile, we implemented a prototype of GreenLink on Nordic nRF51822 chipsets, conducted experiments, and verified in practice. According to the experiments, GreenLink used only 30% central nodes and reduced 50% system energy consumption compared with traditional technology.

Funder

National Natural Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PSM-DMO: Power Save Mode and Discontinuous BLE Mesh Operation;Computer Networks;2022-08

2. BMADS: BLE Mesh Asynchronous Dynamic Scanning;IEEE Internet of Things Journal;2021-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3