Pattern Mathematical Model for Fingerprint Security Using Bifurcation Minutiae Extraction and Neural Network Feature Selection

Author:

Alsharman Nesreen1ORCID,Saaidah Adeeb2ORCID,Almomani Omar2ORCID,Jawarneh Ibrahim3ORCID,Al-Qaisi Laila2ORCID

Affiliation:

1. Computer Science Department, The World Islamic Sciences Education University, Amman, Jordan

2. Computer Network and Information Systems Department, The World Islamic Sciences Education University, Amman, Jordan

3. Mathematics Department, Al-Hussein Bin Talal University, Ma’an, Jordan

Abstract

Biometric based access control is becoming increasingly popular in the current era because of its simplicity and user-friendliness. This eliminates identity recognition manual work and enables automated processing. The fingerprint is one of the most important biometrics that can be easily captured in an uncontrolled environment without human cooperation. It is important to reduce the time consumption during the comparison process in automated fingerprint identification systems when dealing with a large database. Fingerprint classification enables this objective to be accomplished by splitting fingerprints into several categories, but it still poses some difficulties because of the wide intraclass variations and the limited interclass variations since most fingerprint datasets are not categories. In this paper, we propose a classification and matching fingerprint model, and the classification classifies fingerprints into three main categories (arch, loop, and whorl) based on a pattern mathematical model using GoogleNet, AlexNet, and ResNet Convolutional Neural Network (CNN) architecture and matching techniques based on bifurcation minutiae extraction. The proposed model was implemented and tested using MATLAB based on the FVC2004 dataset. The obtained result shows that the accuracy for classification is 100%, 75%, and 43.75% for GoogleNet, ResNet, and AlexNet, respectively. The time required to build a model is 262, 55, and 28 seconds for GoogleNet, ResNet, and AlexNet, respectively.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference60 articles.

1. A review of voice-base person identification:state-of-the-art;C. O. Folorunso;Covenant Journal of Engineering Technology (CJET),2019

2. A CNN-Based Framework for Comparison of Contactless to Contact-Based Fingerprints

3. The mathematical model and deep learning features selection for whorl fingerprint classifications;I. Jawarneh;InterNational Journal of Computational Intelligence Systems,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3