A Hidden Markov Model-Based Tagging Approach for Arabic Isnads of Hadiths

Author:

Najeeb Moath Mustafa Ahmad1ORCID

Affiliation:

1. Computer Science Department, College of Computing at Al-Qunfudah, Umm Al-Qura University, Mecca 21955, Saudi Arabia

Abstract

Hadith judgment implies checking the validity of Hadith to decide whether it is correct (trustworthy) or false (bogus). “Matn” and “Isnad” are the main constituents of Hadith; “Matn” is the sayings of the prophet, whereas “Isnad” represents the narrators’ series. The first step of Hadith judgment is the extraction of narrators’ names, after that, the rules of judgment, which were set out by Hadith’s scientists, could be implemented, three of these rules are particularly related to the narrators’ series, and these rules are continuity of the transmission chain, the trustworthiness of the narrators, and the preciseness of the narrators. Therefore, to check the authenticity of Hadiths, the three conditions must be satisfied, and to do so, the narrators’ names must be extracted first. Isnad contains many words and phrases called “Isnad-Phrases”; these phrases have many types or categories called part of Isnads (POIs) like Narrator-Name, Prophet-Name, and Received-Method. A lot of computational research studies suggest serving Hadith sciences by extracting the narrators’ names and other POIs using various approaches. This study presents a new hybrid approach founded on the hidden Markov model (HMM) and gazetteer lists to process “Isnad.” The approach objective is to expect all POIs in the Isnad including narrators’ names. The experiments carried on 1,000 Hadiths from “Sahih Muslim”: 900 Hadiths as training dataset and 100 Hadiths as testing dataset, and the results show a noteworthy accuracy for the proposed hybrid approach.

Funder

Umm Al-Qura University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3