In Vitro Growth Inhibition, Caspase-Dependent Apoptosis, and S and G2/M Phase Arrest in Breast Cancer Cells Induced by Fluorine-Incorporated Gold I Compound, Ph3PAu[SC(OMe)=NC6H4F-3]

Author:

Yu Richard Ming Chuan1,Selvarajah Gayathri Thevi23,Tan Geok Chin4,Cheah Yoke-Kqueen13ORCID

Affiliation:

1. Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

2. Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

3. UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

4. Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Malaysia

Abstract

Gold-based anticancer compounds have been attracting increasing research interest due to their ability to kill cancer cells resistant to platinum-based compounds. Gold I- and gold III-based complexes have shown satisfactory anticancer activities. In this study, two new fluorine-incorporated gold (I) compounds such as Ph3PAu[SC(OMe)=NC6H4F-3] and DPPFeAu2[(SC(OMe)=NC6H4F-3)]2 were evaluated for their in vitro activities against human breast cancer cell lines, primary breast cancer cells, and breast cancer stem cells (parental breast cancer stem cells, BCSC-P, and breast cancer stem cells, BCSC). Assays for growth inhibition and cytotoxicity, including real-time cell analysis, were carried out to screen effective antibreast cancer compounds. In addition, further in vitro assays such as apoptosis, caspase 3/7 activity, and cell cycle analysis were performed to observe the action and mechanism of killing breast cancer cells by the selected gold I compound, Ph3PAu[SC(OMe)=NC6H4F-3]. The gold (I) compound, Ph3PAu[SC(OMe)=NC6H4F-3], showed low toxicity to H9c2 normal cells and significant growth inhibition in MDA-MB-231 and MCF-7 cells, primary breast cancer cells, and breast cancer stem cells (BCSC-P and BCSC). The IC50 doses of the gold (I) compound Ph3PAu[SC(OMe)=NC6H4F-3] against the breast cancer cell lines MDA-MB-231 and MCF-7 were approximately 6-fold lower than that of cisplatin (cis-diamineplatinum (II) dichloride, CDDP). Moreover, the compound Ph3PAu[SC(OMe)=NC6H4F-3] induced caspase 3/7-dependent apoptosis and cell cycle arrest at S and G2/M phases. Ph3PAu[SC(OMe)=NC6H4F-3], a gold (I) compound incorporated with fluorine, is a potential candidate for the treatment of breast cancer.

Funder

Transdisciplinary Research Grant Scheme

Publisher

Hindawi Limited

Subject

Cancer Research,Pharmacology (medical),Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3