Mechanistic Study of Rail Gouging during Hypersonic Rocket Sled Tests

Author:

Zhou Xuewen12ORCID,Yan Huadong2ORCID,Chen Cheng2ORCID,Yu Yuanfeng2ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Test and Measuring Academy of Norinco Group, Huayin 714200, China

Abstract

Gouging—an obstacle to the development of hypersonic rocket sled test techniques—was mechanistically investigated through experimental and theoretical analyses. Typical gouges were analyzed using macroscopic and microscopic experiments to investigate the evolution of gouging. Quasistatic compression and Hopkinson bar experiments were performed to systematically study the thermoviscoplastic properties of U71Mn rail steel under wide ranges of the strain rate and temperature. The critical condition for gouging was derived based on a thermoviscoplastic constitutive model supplemented by a three-variable criterion for an adiabatic shear instability. The results showed the following. (1) Adiabatic shear bands (ASBs) form when stress reduction under the combined action of frictional heating and high-speed deformation exceeds the strain-hardening effect of the rail material. (2) The nonuniform deformation of the edges of ASBs leads to the generation of cracks that split the rail surface. As the ASBs expand, the cracks grow and coalesce, eventually causing the material to peel off, forming gouges. (3) The relationships among the temperature, strain rate, and strain at the onset of gouging can be determined based on the critical condition for the formation of ASBs in rail steel.

Funder

National Defense Science and Technology Innovation Special Zone Project of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3