Parametric Influences of Geometric Dimensions on High Temperature Mechanical Behaviors and Damage Mechanisms of Ceramic Matrix Composite and Superalloy Double Bolted Joints

Author:

Zhao Shuyuan1ORCID,Sun Qian2ORCID,Zhang Yumin1,Jia Jin3

Affiliation:

1. National key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China

2. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110000, China

3. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Given multiple material performance advantages, ceramic matrix composite (CMC) material has become one of the most promising hot structural materials used for thermal protection system in hypersonic vehicles. Under harsh thermal exposure of vehicles in flight, the design of connection structure would be a critical issue in improving load-carrying efficiency and ensuring service safety of aircraft structures in service environments. However, little attention was paid on mechanical behavior and its factors affecting the mechanical property of CMC joining at elevated temperature. To address this concern, a 3D finite element model coupled with progressive damage analysis is carried out to predict high temperature tensile properties and failure behavior of single-lap, double-bolt CMC/superalloy joints assembled by two serial protruding-head bolts. In the implementation of progressive damage analysis of 2D plain-woven C/SiC composites, a user-defined subroutine UMAT including a nonlinear constitutive model, 3D Alvaro failure criterion and Tan’s material degradation rule were embedded into the general package ABAQUS® through Fortran program interface. A parametric study considering geometries of joints was performed to evaluate their resultant influence on high temperature tensile behavior and the associated damage mechanisms for the CMC/superalloy double-bolt joint. New findings were provided for full exploitation of high performance through geometric design of ceramic matrix composite hot structure for hypersonic aircraft.

Funder

Pre-Research Foundation of Equipment Development Department of People’s Republic of China Central Military Commission

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3