UAV-Enabled Data Collection: Multiple Access, Trajectory Optimization, and Energy Trade-Off

Author:

Xiao Lin1ORCID,Liang Yipeng1ORCID,Weng Chenfan1,Yang Dingcheng1ORCID,Zhao Qingmin1ORCID

Affiliation:

1. Information Engineering School, Nanchang University, Nanchang 330031, China

Abstract

In this paper, we consider a ground terminal (GT) to an unmanned aerial vehicle (UAV) wireless communication system where data from GTs are collected by an unmanned aerial vehicle. We propose to use the ground terminal-UAV (G-U) region for the energy consumption model. In particular, to fulfill the data collection task with a minimum energy both of the GTs and UAV, an algorithm that combines optimal trajectory design and resource allocation scheme is proposed which is supposed to solve the optimization problem approximately. We initialize the UAV’s trajectory firstly. Then, the optimal UAV trajectory and GT’s resource allocation are obtained by using the successive convex optimization and Lagrange duality. Moreover, we come up with an efficient algorithm aimed to find an approximate solution by jointly optimizing trajectory and resource allocation. Numerical results show that the proposed solution is efficient. Compared with the benchmark scheme which did not adopt optimizing trajectory, the solution we propose engenders significant performance in energy efficiency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3