Spatial Spectroscopy Approach for Detection of Internal Defect of Component without Zero-Position Sensors

Author:

Wu Qizhou1,Jin Yong1,Wang Zhaoba1,Xiao Zhaoqian1

Affiliation:

1. National Key Lab for Electronic Measurement Technology, North University of China, Taiyuan, Shanxi 030051, China

Abstract

Conventional approach to detect the internal defect of a component needs sensors to mark the “zero” positions, which is time-consuming and lowers down the detecting efficiency. In this study, we proposed a novelty approach that uses spatial spectroscopy to detect internal defect of objects without zero-position sensors. Specifically, the spatial variation wave of distance between the detecting source and object surface is analyzed, from which a periodical cycle is determined with the correlative approaches. Additionally, a wavelet method is adopted to reduce the noise of the periodic distance signal. This approach is validated by the ultrasound detection of a component with round cross section and elliptical shape in axis. The experimental results demonstrate that this approach greatly saves the time spent on the judgment of a complete cycle and improves the detecting efficiency of internal defect in the component. The approach can be expanded to other physical methods for noninvasive detection of internal defect, such as optical spectroscopy or X-ray scanning, and it can be used for hybrid medium, such as biological tissues.

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3