Notoginsenoside Fc Accelerates Reendothelialization following Vascular Injury in Diabetic Rats by Promoting Endothelial Cell Autophagy

Author:

Liu Jingjing1,Jiang Chunyu1,Ma Xu1,Feng Lishuai1,Wang Jianbo1ORCID

Affiliation:

1. Department of Interventional Radiology, The Sixth People’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, China

Abstract

Interventional therapies, such as percutaneous transluminal angioplasty and endovascular stent implantation, are used widely for the treatment of diabetic peripheral vascular complications. Reendothelialization is an essential process in vascular injury following interventional therapy, and hyperglycemia in diabetes mellitus (DM) plays an important role in damaging endothelial layer integrity, leading to the retardance of reendothelialization and excessive neointimal formation. Notoginsenoside Fc (Fc), a novel saponin isolated fromPanax notoginseng, effectively counteracts platelet aggregation. Nevertheless, the potential effects and molecular mechanisms of Fc on reendothelialization have yet to be explored. In this study, we present novel findings that show the benefit of Fc in accelerating reendothelialization and alleviating excessive neointimal formation following carotid artery injury in diabetic Sprague–Dawley ratsin vivo. Simultaneously, the decreased autophagy of the injured carotid artery in diabetic rats was restored by Fc treatment. Ourin vitroresults also demonstrated that Fc promoted endothelial cell proliferation and migration under high-glucose treatment by increasing autophagy. In summary, this study supported the notion that Fc could accelerate reendothelialization following vascular injury in diabetic rats by promoting autophagy, suggesting that Fc may exert therapeutic benefits for early endothelial injury and restenosis following intervention in diabetes-associated vascular diseases.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3