Antitumor Proliferation and Related Mechanism of Ultrasound Irradiation Combined with Safflower Yellow

Author:

Li Gen1,Xu Lijun1,Wang Xiaoli23ORCID

Affiliation:

1. Division of Cardiothroracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China

2. Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China

3. Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China

Abstract

Ultrasound irradiation is now the best method for evaluating benign and malignant tumor nodules. Chemotherapy has always played an important role in the treatment of malignant tumors. With the large-scale application of chemotherapy drugs, the problem of multidrug resistance of tumors has become more and more prominent, which has become one of the difficulties in tumor chemotherapy. This study mainly explores the antitumor proliferation and related mechanisms of ultrasound irradiation combined with safflower yellow. The breast cancer cell line 4T1 derived from BALB/c mice was selected. BALB/c is an albino laboratory mouse, which, like many commonly used sublines, originated from Mus musculus. BALB/c mice have been bred for more than 200 generations in research institutions around the world and are widely used in animal experiments in immunology and physiology. When the cell proliferation reached 80%–90% of the bottom area of the culture flask, it was resuspended, passaged, frozen, and resuscitated according to experimental needs. The 4T1 breast cancer cell line was cultured by conventional methods. 4T1 breast cancer cells in the logarithmic proliferation phase were collected. After 0.25% was digested with pancreatin, it was washed twice with PBS to adjust the concentration to 1 × 107/mL. A 0.1 mL tumor cell suspension was subcutaneously inoculated on the edge of the mouse chest, thereby establishing a breast cancer model of BALB/c mice. After 6-15 days, the tumor volume grew rapidly and became larger. When the length of the tumor is 2.5 × 2.5, the modeling is successful. Ultrasound-targeted microbubble destruction technology, as a novel drug delivery method with high efficiency and low toxicity, can form transient pores (sonoporation effect) on the cell surface, widen the intercellular space, and increase the membrane permeability, and thus effectively. The transport of drugs, genes, proteins, etc., is promoted to target organs and tissues. Tumor-forming mice were randomly divided into the following four groups: control group, safflower yellow group, ultrasound irradiation group, and ultrasound irradiation combined with safflower yellow group. From the second day of inoculation to the end of the experiment, the body weight of the mice successfully inoculated with 4T1 cells was measured every day; from the 5th day, tumors in each group were calculated body volume and tumor inhibition rate (TIR) of each group. The combined treatment group has a higher tumor inhibition rate than the ultrasound irradiation group, and the difference is statistically significant ( P  < 0.05). Ultrasound irradiation combined with safflower yellow pigment can effectively inhibit tumor proliferation, maintain, or even improve the efficacy of chemotherapy, thereby improving the patient’s tolerance to chemotherapy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3