Optimization of Tree-Based Machine Learning Models to Predict the Length of Hospital Stay Using Genetic Algorithm

Author:

Mansoori Atefeh1ORCID,Zeinalnezhad Masoomeh2ORCID,Nazarimanesh Leila3ORCID

Affiliation:

1. Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Industrial Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran

3. Department of Healthcare Administration, Entrepreneur and Management Consultant, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

The length of hospital stay (LOS) is a significant indicator of the quality of patient care, hospital efficiency, and operational resilience. Considering the importance of LOS in hospital resource management, this research aims to improve the accuracy of LOS prediction using hyperparameter optimization (HPO). Expert physicians and related studies were reviewed to determine the variables affecting LOS. The electronic medical records of 200 patients in the department of internal medicine of a hospital in Iran were collected randomly. As the performance of machine learning (ML) models can vary based on the characteristics of the features, several models were applied and evaluated in this study. In particular, k-nearest neighbors (KNN), multivariate regression, decision tree (DT), random forest (RF), artificial neural network (ANN), and XGBoost have been evaluated and improved. The genetic algorithm (GA) was applied to optimize the tree-based models. In addition, the dummy coding technique, sometimes called the One-Hot encoding, was used to encode categorical features to increase prediction accuracy. Compared with other algorithms, the XGBoost model optimized by GA (XGB_GA) achieved higher accuracy and better prediction performance. The mean and median of absolute errors in the test dataset for this model were 1.54 and 1.14 days, respectively. In other words, the XGB_GA model reduced the mean absolute error by 37%, which is beneficial in the reliable design of a clinical decision support system.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3