An ε-Constraint Method for Multiobjective Linear Programming in Intuitionistic Fuzzy Environment

Author:

Pérez-Cañedo Boris1ORCID,Verdegay José Luis2ORCID,Concepción-Morales Eduardo René3ORCID

Affiliation:

1. Department of Mathematics, University of Cienfuegos, Cienfuegos 55100, Cuba

2. Department of Computer Science and Artificial Intelligence, University of Granada, Granada 18071, Spain

3. Department of Informatics, University of Cienfuegos, Cienfuegos 55100, Cuba

Abstract

Effective decision-making requires well-founded optimization models and algorithms tolerant of real-world uncertainties. In the mid-1980s, intuitionistic fuzzy set theory emerged as another mathematical framework to deal with the uncertainty of subjective judgments and made it possible to represent hesitancy in a decision-making problem. Nowadays, intuitionistic fuzzy multiobjective linear programming (IFMOLP) problems are a topic of extensive research, for which a considerable number of solution approaches are being developed. Among the available solution approaches, ranking function-based approaches stand out for their simplicity to transform these problems into conventional ones. However, these approaches do not always guarantee Pareto optimal solutions. In this study, the concepts of dominance and Pareto optimality are extended to the intuitionistic fuzzy case by using lexicographic criteria for ranking triangular intuitionistic fuzzy numbers (TIFNs). Furthermore, an intuitionistic fuzzy ε-constraint method is proposed to solve IFMOLP problems with TIFNs. The proposed method is illustrated by solving two intuitionistic fuzzy transportation problems addressed in two studies (S. Mahajan and S. K. Gupta’s, “On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions,” Ann Oper Res, vol. 296, no. 1, pp. 211–241, 2021, and Ghosh et al.’s, “Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem,” Complex Intell Syst, vol. 7, no. 2, pp. 1009–1023, 2021). Results show that, in contrast with Mahajan and Gupta’s and Ghosh et al.’s methods, the proposed method guarantees Pareto optimality and also makes it possible to obtain multiple solutions to the problems.

Funder

Ministerio de Ciencia e Innovación

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Reference32 articles.

1. Automation;M. P. Groover,2022

2. Defining and demystifying automated decision systems;R. Richardson;Maryland Law Review,2022

3. Fuzzy sets

4. Intuitionistic fuzzy sets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3