Chaotic Power System Stabilization Based on Novel Incommensurate Fractional-Order Linear Augmentation Controller

Author:

Al-Hussein Abdul-Basset A.1ORCID,Tahir Fadhil Rahma1ORCID,Rajagopal Karthikeyan2ORCID

Affiliation:

1. Department of Electrical Engineering, University of Basrah, Basrah, Iraq

2. Center for Nonlinear Systems, Chennai Institute of Technology, Chennai, India

Abstract

The nonlinear dynamics of an incommensurate fractional-order single-machine infinite-bus (SMIB) power system benchmark model are explored and studied by means of modern nonlinear analysis theories, such as bifurcation, chaos, power spectral density (PSD), and bicoherence methods. The effect of incommensurate order derivatives on power system dynamics is presented. The study reveals that the power system undergoes interesting dynamics such as periodic motion, chaotic oscillations, and multistability whenever the system parameter values fall into particular ranges. A new fractional-order linear augmentation-based control scheme is applied to damp out the power system’s chaotic oscillation, change the stability of the coexisting states, and drive the system from multistability to monostability. The stability of the proposed control system is derived using Lyapunov theory. Simulation results confirmed the effectiveness and robustness of the proposed control scheme in damping power system oscillations and achieving good overall performance. The results in this paper will give a better understanding of the nonlinear dynamic behaviors of the incommensurate fractional-order SMIB power system.

Funder

Chennai Institute of Technology

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3