Cyclic Stress Response and Fracture Behaviors of Alloy 617 Base Metal and Weld Joints under LCF Loading

Author:

Kim Seon Jin1,Dewa Rando Tungga1,Kim Woo Gon2,Kim Min Hwan2

Affiliation:

1. Pukyong National University, 365 Shinsunro, Nam-gu, Busan 608-739, Republic of Korea

2. Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353, Republic of Korea

Abstract

Cyclic stress response and fracture behaviors of Alloy 617 base metal (BM) and Alloy 617 weld joints (WJ) are investigated under strain controlled low cycle fatigue (LCF) loading. Axial fully reversed total-strain controlled tests have been conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2, and 1.5%. At the all testing conditions, weld joint specimens have shown higher peak stresses than the base metal specimens, whereas the plastic strain accumulation of the base metal specimens is comparatively higher than those of the weld joint specimens. The cyclic stress response behavior of both base metal and weld joint specimens revealed initial cyclic hardening during first small number of cycles followed by progressive softening to failure. Higher strain amplitudes decreased the fatigue lives for both base metal and weld joint specimens; subsequently weld joint specimens had lower fatigue resistances relative to base metal specimens. Furthermore, the cracking in weld joint specimens initiated in the weld metal (WM) region. The crack initiation and propagation showed transgranular mode for both base metal and weld joint specimens; especially weld joint specimens showed a wedge type crack initiation about 45 degrees to the loading direction because of the dendritic structure.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3