Affiliation:
1. Sichuan Film and Television University, Chengdu, Sichuan 610000, China
2. Sichuan Technology and Business University, Chengdu, Sichuan 610000, China
Abstract
The automatic capture and analysis of basketball game movements can guide basketball training and provide an effective method for improving the efficiency of basketball training. This paper introduces the research status of clustering methods in the field of trajectory data mining and reconstruction in detail. By analyzing the trajectory data under the constraints of the road network, the spatiotemporal characteristics of the existing trajectory clustering methods, and the deficiencies of the existing trajectory clustering methods, a new trajectory clustering method based on trajectory segmentation and spatiotemporal similarity measurement is implemented. A motion capture and reconstruction method for basketball training based on visual image K-means clustering algorithm is proposed. Multiresolution frame scanning technology is used to collect machine images of basketball training movements, and edge contour processing is performed on the collected high-resolution basketball training movement images. Feature detection uses the three-dimensional model reconstruction method to segment the basketball training action area and combines the irregular triangle network model to realize the machine vision block template matching processing of basketball training actions and capture the basketball training action in the Gaussian fuzzy affine space. In time and feature extraction, wavelet lifting technology is used to identify the ambiguity of basketball training movements, image enhancement technology is used to improve the resolution and adaptability of basketball training movement capture, and machine vision image processing methods are used to achieve basketball training movement capture optimization. The simulation results show that the method has better adaptability and higher feature recognition ability for basketball training motion capture and improves the feature extraction and adaptive capture reconstruction ability of basketball training motion.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献