Affiliation:
1. Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China
Abstract
Ridesharing two-sided platforms link the stochastic demand side and the self-scheduling capacity supply side where there are network externalities. The main purpose of this paper is to establish the optimal pricing model of ridesharing platforms to dynamically coordinate uncertain supply and stochastic demand with network externalities in order to maximize platforms’ revenue and social welfare. We propose dynamic pricing strategies under two demand scenarios that minimize order loss in the surge demand period and maximize social welfare in the declining demand period. The numerical simulation results show that dynamic pricing strategies could stimulate the supply to reduce delayed orders in the surge demand scenario and adjust the demand to maximize social welfare under declining demand scenario. Additionally, we further find that the direct network externalities positively influence the platforms’ revenue, and the indirect network externalities have a negative effect on social welfare in the declining demand scenario, and a higher wage ratio cannot enhance the platforms’ revenue.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献