Effect of Missing Data Imputation on Deep Learning Prediction Performance for Vesicoureteral Reflux and Recurrent Urinary Tract Infection Clinical Study

Author:

Köse Timur1,Özgür Su1ORCID,Coşgun Erdal2ORCID,Keskinoğlu Ahmet3,Keskinoğlu Pembe4

Affiliation:

1. Ege University Faculty of Medicine, Department of Biostatistics and Medical Informatics, Turkey

2. Genomics Team, Microsoft Research, Redmond, WA, USA

3. Ege University Children’s Hospital, Department of Pediatric Nephrology, Turkey

4. Dokuz Eylul University Faculty of Medicine, Department of Biostatistics and Medical Informatics, Turkey

Abstract

Missing observations are always a challenging problem that we have to deal with in diseases that require follow-up. In hospital records for vesicoureteral reflux (VUR) and recurrent urinary tract infection (rUTI), the number of complete cases is very low on demographic and clinical characteristics, laboratory findings, and imaging data. On the other hand, deep learning (DL) approaches can be used for highly missing observation scenarios with its own missing ratio algorithm. In this study, the effects of multiple imputation techniques MICE and FAMD on the performance of DL in the differential diagnosis were compared. The data of a retrospective cross-sectional study including 611 pediatric patients were evaluated (425 with VUR, 186 with rUTI, 26.65% missing ratio) in this research. CNTK and R 3.6.3 have been used for evaluating different models for 34 features (physical, laboratory, and imaging findings). In the differential diagnosis of VUR and rUTI, the best performance was obtained by deep learning with MICE algorithm with its values, respectively, 64.05% accuracy, 64.59% sensitivity, and 62.62% specificity. FAMD algorithm performed with accuracy=61.52, sensitivity=60.20, and specificity was found out to be 61.00 with 3 principal components on missing imputation phase. DL-based approaches can evaluate datasets without doing preomit/impute missing values from datasets. Once DL method is used together with appropriate missing imputation techniques, it shows higher predictive performance.

Funder

Türkiye Bilimsel ve Teknolojik Arastirma Kurumu

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3