Investigation of Optical and Dielectric Properties of Nickel-Doped Zinc Oxide Nanostructures Prepared via Coprecipitation Method

Author:

Ahmad Sohail1ORCID,Usman Muhammad1ORCID,Hashim Muhammad1ORCID,Ali Atizaz1ORCID,Shah Rasool2ORCID,Rahman Naveed Ur3ORCID

Affiliation:

1. Department of Physics, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan

2. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

3. Department of Physics, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan

Abstract

Nanostructures of undoped zinc oxide and nickel-doped zinc oxide (Ni = Zn0.98Ni0.02O, Zn0.96Ni0.04O, and Zn0.94Ni0.06O) were synthesized by using the coprecipitation process, and their optical and dielectric properties were simultaneously investigated. The XRD results confirm the hexagonal structure having space group P63mc. By increasing nickel concentration, the particle size decreases, while the strain is increased. Fourier-transform infrared (FTIR) analysis was carried out in order to learn more about the phonon modes present in nickel-doped zinc oxide. UV-Vis spectroscopy further revealed that the optical band gap of nickel-doped samples varied from 3.18 eV to 2.80 eV. The SEM analysis confirms the rod shape morphology of the already synthesized samples. EDX analysis investigates the incorporation of nickel ions into the zinc oxide lattice. Using photoluminescence spectroscopy, we found that the synthesized materials had oxygen vacancies (Vo) and zinc interstitial (Zni) defects. Dielectric constant (εr) and dielectric loss (ε) are both improved in nickel-doped zinc oxide compared to undoped zinc oxide. Since more charge carriers enhanced after the nickel ions were exchanged for the Zn ions, the AC electrical conductivity (σa.c) improves by nickel doping compared to undoped zinc oxide.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3