Chaotic Salp Swarm Optimization-Based Energy-Aware VMP Technique for Cloud Data Centers

Author:

Parthiban S.1,Harshavardhan A.2,Neelakandan S.3,Prashanthi Vempaty2,Alhassan Alolo Abdul-Rasheed Akeji4ORCID,Velmurugan S.5

Affiliation:

1. Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India

2. Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

3. Department of Computer Science and Engineering, R.M.K. Engineering College, Chennai, India

4. Department of Marketing and Corporate Strategy, Tamale Technical University, Tamale, Ghana

5. Department of Computer Science and Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India

Abstract

The amount of energy required by Cloud Data Centers (CDCs) has increased significantly in this digital age, and as a result, there is a pressing need to reduce CDC energy ingesting. Consolidation of virtual machines (VMs) and effective virtual machine placement (VMP) techniques are commonly employed in large data middles to reduce energy consumption. The VMP is an NP-hard subject with infeasible optimum explanations even for tiny data middles, and it is dealt with using the Metaheuristic Optimization Algorithm, which is an experiential approach to optimization. With this in mind, this study introduces a novel energy-aware VMP technique for CDCs that is founded on the Disordered Salp Swarm Optimization Algorithm (EAVMP-CSSA) and is enhanced for energy efficiency (EAVMP-CSSA). The EAVMP-CSSA technique attempts to reduce CDC energy ingesting by dropping the quantity of active servers supporting virtual machines. The recommended EAVMP-CSSA strategy also aims to balance the resource operation of active servers (i.e., CPU, RAM, and Bandwidth), hence reducing waste and increasing efficiency. Furthermore, by combining the ideas of chaotic maps with the standard Salp Swarm Optimization Algorithm (SSA), the CSSA is intended to improve overall performance and reduce computational costs (SSA). A comprehensive range of experimental analyses are performed to ensure that the EAVMP-CSSA technique performs better, and the findings are compared to current VMP techniques. The EAVMP-CSSA approach achieves an effective outcome with a maximum service rate of 98.12%, whereas the Random, FFD, ACO, and AP-ACO procedures achieve a minimum service rate of 74.40%, 78.80%, 90.70%, and 96.31%, respectively. The experimental results demonstrate that the EAVMP-CSSA approach outperforms other assessment metrics.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3