Fuzzy Supervisor Approach Design Based-Switching Controller for Pumping Station: Experimental Validation

Author:

Chakchouk Wael1ORCID,Ben Regaya Chiheb1ORCID,Zaafouri Abderrahmen1,Sellami Anis1

Affiliation:

1. Higher National Engineering School of Tunis (ENSIT), Laboratory of Industrial Systems Engineering and Renewable Energy (LISIER), University of Tunis, Taha Hussein Street, BP 56, Bab Menara, 1008 Tunis, Tunisia

Abstract

This paper proposes a discrete-time switching controller strategy for a hydraulic process pumping station. The proposed solution leads to improving control system performances with two tests: combination of Fuzzy-PD and PI controllers and Fuzzy-PID and PI controllers. The proposed design methodology is based on accurate model for pumping station (PS), which is developed in previous works using Fuzzy-C Means (FCM) algorithm. The control law design is based on switching control; a fuzzy supervisor manages the switching from one to another and regulates the rate of participation of each order, in order to satisfy various objectives of a stable pumping station like the asymptotic stability of the tracking error. To validate the proposed solution, experimental tests are made and analyzed. Compared to the conventional PI and fuzzy logic (FL) approaches, the results show that the switching controller allows exhibiting excellent transient response over a wide range of operating conditions and especially is easier to be implemented in practice.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3