Enhancement of Infrared Imagery through Low‐Light Image Guidance Leveraging Deep Learning Techniques

Author:

Gan YongORCID,Wang YuefengORCID

Abstract

Addressing challenges in infrared imaging, such as low contrast, blurriness, and detail scarcity due to environmental limitations and the target’s limited radiative capacity, this research introduces a novel infrared image enhancement approach using low‐light image guidance. Initially, the Cbc‐SwinIR model (coordinate‐based convolution‐ image restoration using Swin Transformer) is applied for super‐resolution reconstruction of both shimmer and infrared images, improving their resolution and clarity. Next, the MAXIM model (multiaxis MLP for image processing) enhances the visibility of low‐light images under low illumination. Finally, the AILI (adaptive infrared and low‐light)‐fusion algorithm fuses the processed low‐light image with the infrared image, achieving comprehensive visual enhancement. The enhanced infrared image exhibits significant improvements: a 0.08 increase in fractal dimension (FD), 0.094 rise in information entropy, 0.00512 elevation in mean square error (MSE), and a 12.206 reduction in peak signal‐to‐noise ratio (PSNR). These advancements in FD and information entropy highlight a substantial improvement in the complexity and diversity of the infrared image’s features. Despite a decrease in PSNR and an increase in MSE, this indicates that the newly introduced information enhances contrast and enriches texture details in the infrared images, resulting in pixel‐level variations. This methodology demonstrates considerable improvements in visual content and analytical value, proving relevant, innovative, and efficient in infrared image enhancement with broad application prospects.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3