Adrenergic Activation of Melatonin Secretion in Ovine Pineal Explants in Short-Term Superfusion Culture Occurs via Protein Synthesis Independent and Dependent Phenomena

Author:

Lewczuk Bogdan1ORCID,Ziółkowska Natalia1ORCID,Prusik Magdalena1ORCID,Przybylska-Gornowicz Barbara1ORCID

Affiliation:

1. Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland

Abstract

The ovine pineal is generally considered as an interesting model for the study on adrenergic regulation of melatonin secretion due to some functional similarities with this gland in the human. The present investigations, performed in the superfusion culture of pineal explants, demonstrated that the norepinephrine-induced elevation of melatonin secretion in ovine pinealocytes comprised of two subsequent periods: a rapid increase phase and a slow increase phase. The first one included the quick rise in release of N-acetylserotonin and melatonin, occurring parallel to elevation of NE concentration in the medium surrounding explants. This rapid increase phase was not affected by inhibition of translation. The second, slow increase phase began after NE level had reached the maximum concentration in the culture medium and lasted about two hours. It was completely abolished by the treatment with translation inhibitors. The obtained results showed for the first time that the regulation of N-acetylserotonin synthesis in pinealocytes of some species like the sheep involves the on/off mechanism, which is completely independent of protein synthesis and works very fast. They provided strong evidence pointing to the need of revision of the current opinion that arylalkylamines N-acetyltransferase activity in pinealocytes is controlled exclusively by changes in enzyme abundance.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3