Affiliation:
1. Department of Transportation and Communication Management Science, National Cheng Kung University, Tainan, Taiwan
2. Center for Innovative FinTech Business Models, National Cheng Kung University, Tainan, Taiwan
Abstract
Real-time traffic signal control has long been a critical way to improve traffic congestion. Transit Signal Priority (TSP) is seen as a cost-effective way to reduce travel time variability. Most of the previous studies develop real-time signal control systems on a vehicle basis, which is unable to efficiently provide preferential treatment on transit vehicles. Person-based signal control systems, which transform traffic delay computation units from vehicle to passenger, have been proposed to try to address this limitation. However, their models, optimizing signal plan cycle-by-cycle, cannot rapidly respond to traffic variations. This study proposes a Person-based Adaptive traffic signal control method with Cooperative Transit signal priority (PACT). In PACT, not only do Road-Side Units (RSUs) perform signal optimization, but also On-Board Units (OBUs) provide in-vehicle speed advisory to reduce delays. The interaction between RSU and OBU is conducted second-by-second, which has high adaptability to traffic variations. Experiments are performed based on real traffic data via traffic simulation platform SUMO. The results indicate that PACT can efficiently reduce delays of both bus passengers and auto passengers at a signalized intersection. Compared to preoptimized signal plans, the results show that each passenger on transit vehicles experiences 33%–70% decreases in delays, and each auto passenger experiences 3%–29% decreases in delays. PACT can reduce 80%–98% in delays when the occupancy weight factor is relatively large, showing the potential of extending PACT on performing signal preemption.
Funder
Ministry of Science and Technology, Taiwan
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献