Affiliation:
1. Academy of Music, Yuxi Normal University, Yuxi 653100, China
2. Faculty of Data Science, City University of Macau, Macau 999078, China
Abstract
In this paper, melody and harmony are regarded as the task of machine learning, and a piano arranger timbre recognition system based on AI (Artificial Intelligence) is constructed by training a series of samples. The short-time Fourier transform spectrum analysis method is used to extract the piano timbre characteristic matrix, and the electronic synthesis of timbre recognition is improved by extracting the envelope function. Using the traditional multilabel classification method and KNN (K-nearest neighbor) algorithm, a combined algorithm of these two algorithms is proposed. The experimental results show that the detection rate increases from 61.3% to 70.2% after using the combined classification algorithm. The correct rate also increased from 40.3% to 48.9%, and the detection rate increased to 74.6% when the K value was set to 6. The experimental results show that, compared with the traditional classification algorithm, this algorithm has a certain improvement in recognition rate. Using this system to recognize the timbre of piano arrangement has a high recognition accuracy, which is worthy of further popularization and application.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献