Deformation Modeling and Simulation of a Novel Bionic Software Robotics Gripping Terminal Driven by Negative Pressure Based on Classical Differential Algorithm

Author:

Chen Yinuo1,Yao Ligang1ORCID,Wang Zhenya1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Abstract

A general pneumatic soft gripper is proposed in this paper. Combined with the torque balance theory, the mathematical theoretical model of bending deformation of soft gripper is established based on Yeoh constitutive model and classical differential geometry. Assuming that the pressure in each inner cavity is evenly distributed, the input gas is in an ideal state, which is approximately treated as an isothermal condition, and all orifices experience blocked flow. In addition, compared with the mechanical work of gas, the energy related to gas flow and heat transfer is negligible. The nonlinear mechanical properties of silicone rubber are studied. It is regarded as isotropic and incompressible material, which is characterized by strain energy per unit volume. The material constant coefficients C10 and C20 are determined through the uniaxial tensile test, and the software gripper is simulated on the ABAQUS platform. The bending deformation models of grippers with three different force-bearing cavity structures are analyzed and compared, and the software clamping structure with the bending deformation most in line with the application conditions is selected. The limit input air pressure of the gripper and the situation of enveloping the clamping target object are analyzed. Through the bending deformation experiment, the maximum deformation angle is 72.4°. The relative error between the simulation analysis data and the prediction results of the mathematical model is no more than 3.5%, which verifies the effectiveness of the simulation and the correctness of the mathematical theoretical model of bending deformation. The soft manipulator proposed in this paper has good adaptability to grasping objects of different shapes and sizes. The minimum diameter of the target object that can be clamped is 0.1 mm. It can clamp the object weighing up to 1 kg. It has compact size, light weight, high ductility, and flexibility.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3