Comprehensive Assessment of Degradation Behavior of Simvastatin by UHPLC/MS Method, Employing Experimental Design Methodology

Author:

Hadzieva Gigovska Maja1ORCID,Petkovska Ana1,Acevska Jelena2,Nakov Natalija2,Antovska Packa1,Ugarkovic Sonja1,Dimitrovska Aneta2

Affiliation:

1. Research & Development, Alkaloid AD, Blvd. Aleksandar Makedonski 12, 1000 Skopje, Macedonia

2. Faculty of Pharmacy, University “Ss Cyril and Methodius”, Mother Theresa 47, 1000 Skopje, Macedonia

Abstract

This manuscript describes comprehensive approach for assessment of degradation behavior of simvastatin employing experimental design methodology as scientific multifactorial strategy. Experimental design methodology was used for sample preparation and UHPLC method development and optimization. Simvastatin was subjected to stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Using2nfull factorial design degradation conditions were optimized to obtain targeted level of degradation. Screening for optimal chromatographic condition was made by Plackett–Burman design and optimization chromatographic experiments were conducted according to Box-Behnken design. Successful separation of simvastatin from the impurities and degradation products was achieved on Poroshell 120 EC C18 50 × 3.0 mm 2.7μm, using solutions of 20 mM ammonium formate pH 4.0 and acetonitrile as the mobile phase in gradient mode. The proposed method was validated according to International Conference on Harmonization (ICH) guidelines. Validation results have shown that the proposed method is selective, linear, sensitive, accurate, and robust and it is suitable for quantitative determination of simvastatin and its impurities. Afterwards, the degradation products were confirmed by a direct hyphenation of liquid chromatograph to ion-trap mass spectrometer with heated electrospray ionization interface. This study highlights the multiple benefits of implementing experimental design, which provides a better understanding of significant factors responsible for degradation and ensures successful way to achieve degradation and can replace the trial and error approach used in conventional forced degradation studies.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3