Affiliation:
1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China
2. School of Electronic and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract
Nonlocal methods have shown great potential in many image restoration tasks including compressive sensing (CS) reconstruction through use of image self-similarity prior. However, they are still limited in recovering fine-scale details and sharp features, when rich repetitive patterns cannot be guaranteed; moreover the CS measurements are corrupted. In this paper, we propose a novel CS recovery algorithm that combines nonlocal sparsity with local and global prior, which soften and complement the self-similarity assumption for irregular structures. First, a Laplacian scale mixture (LSM) prior is utilized to model dependencies among similar patches. For achieving group sparsity, each singular value of similar packed patches is modeled as a Laplacian distribution with a variable scale parameter. Second, a global prior and a compensation-based sparsity prior of local patch are designed in order to maintain differences between packed patches. The former refers to a prediction which integrates the information at the independent processing stage and is used as side information, while the latter enforces a small (i.e., sparse) prediction error and is also modeled with the LSM model so as to obtain local sparsity. Afterward, we derive an efficient algorithm based on the expectation-maximization (EM) and approximate message passing (AMP) frame for the maximum a posteriori (MAP) estimation of the sparse coefficients. Numerical experiments show that the proposed method outperforms many CS recovery algorithms.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献