CC_TRS: Continuous Clustering of Trajectory Stream Data Based on Micro Cluster Life

Author:

Riyadh Musaab1ORCID,Mustapha Norwati1,Sulaiman Md. Nasir1,Sharef Nurfadhlina Binti Mohd1

Affiliation:

1. Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Abstract

The rapid spreading of positioning devices leads to the generation of massive spatiotemporal trajectories data. In some scenarios, spatiotemporal data are received in stream manner. Clustering of stream data is beneficial for different applications such as traffic management and weather forecasting. In this article, an algorithm for Continuous Clustering of Trajectory Stream Data Based on Micro Cluster Life is proposed. The algorithm consists of two phases. There is the online phase where temporal micro clusters are used to store summarized spatiotemporal information for each group of similar segments. The clustering task in online phase is based on temporal micro cluster lifetime instead of time window technique which divides stream data into time bins and clusters each bin separately. For offline phase, a density based clustering approach is used to generate macro clusters depending on temporal micro clusters. The evaluation of the proposed algorithm on real data sets shows the efficiency and the effectiveness of the proposed algorithm and proved it is efficient alternative to time window technique.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient and Distributed Framework for Real-Time Trajectory Stream Clustering;IEEE Transactions on Knowledge and Data Engineering;2023

2. Zebra regression;Proceedings of the 30th International Conference on Advances in Geographic Information Systems;2022-11

3. Finding Shortest Path in Road Networks Based on Jam-Distance Graph and Dijkstra’s Algorithm;Lecture Notes in Networks and Systems;2022-09-27

4. Evolutionary Clustering of Moving Objects;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

5. Discovery of evolving companion from trajectory data streams;Knowledge and Information Systems;2020-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3