Prefetching Scheme for Massive Spatiotemporal Data in a Smart City

Author:

Xiong Lian12,Xu Zhengquan12,Wang Hao12,Jia Shan12,Zhu Li3

Affiliation:

1. State Key Laboratory of Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

2. Collaborative Innovation Center for Geospatial Technology, Wuhan 430079, China

3. Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China

Abstract

Employing user access patterns to develop a prefetching scheme can effectively improve system I/O performance and reduce user access latency. For massive spatiotemporal data, traditional pattern mining methods fail to directly reflect the spatiotemporal correlation and transition rules of user access, resulting in poor prefetching performance. This paper proposed a prefetching scheme based on spatial-temporal attribute prediction, named STAP. It maps the history of user access requests to the spatiotemporal attribute domain by analyzing the characteristics of spatiotemporal data in a smart city. According to the spatial locality and time stationarity of user access, correlation analysis is performed and variation rules are identified for the history of user access requests. Further, the STAP scheme mines the user access patterns and constructs a predictive function to predict the user's next access request. Experimental results show that the prefetching scheme is simple yet effective; it achieves a prediction accuracy of 84.3% for access requests and reduces the average data access response time by 44.71% compared with the nonprefetching scheme.

Funder

National Key Basic Research and Development Program of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3