Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data

Author:

Tapak Leili12ORCID,Kosorok Michael R.3ORCID,Sadeghifar Majid4ORCID,Hamidi Omid5ORCID,Afshar Saeid6ORCID,Doosti Hassan7ORCID

Affiliation:

1. Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

2. Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

3. Department of Biostatistics, Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, USA

4. Department of Statistics, Bu-Ali Sina University, Hamedan, Iran

5. Department of Science, Hamedan University of Medical Science, Hamedan 65155, Iran

6. Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

7. Department of Mathematics and Statistics, Macquarie University, Sydney, Australia

Abstract

Variable selection and penalized regression models in high-dimension settings have become an increasingly important topic in many disciplines. For instance, omics data are generated in biomedical researches that may be associated with survival of patients and suggest insights into disease dynamics to identify patients with worse prognosis and to improve the therapy. Analysis of high-dimensional time-to-event data in the presence of competing risks requires special modeling techniques. So far, some attempts have been made to variable selection in low- and high-dimension competing risk setting using partial likelihood-based procedures. In this paper, a weighted likelihood-based penalized approach is extended for direct variable selection under the subdistribution hazards model for high-dimensional competing risk data. The proposed method which considers a larger class of semiparametric regression models for the subdistribution allows for taking into account time-varying effects and is of particular importance, because the proportional hazards assumption may not be valid in general, especially in the high-dimension setting. Also, this model relaxes from the constraint of the ability to simultaneously model multiple cumulative incidence functions using the Fine and Gray approach. The performance/effectiveness of several penalties including minimax concave penalty (MCP); adaptive LASSO and smoothly clipped absolute deviation (SCAD) as well as their L2 counterparts were investigated through simulation studies in terms of sensitivity/specificity. The results revealed that sensitivity of all penalties were comparable, but the MCP and MCP-L2 penalties outperformed the other methods in term of selecting less noninformative variables. The practical use of the model was investigated through the analysis of genomic competing risk data obtained from patients with bladder cancer and six genes of CDC20, NCF2, SMARCAD1, RTN4, ETFDH, and SON were identified using all the methods and were significantly correlated with the subdistribution.

Funder

Hamadan University of Medical Sciences

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3