The Nine RNA Methylation Regulatory Gene Signature Is Associated with the Pathogenesis of Atrial Fibrillation by Modulating the Immune Microenvironment in the Atrial Tissues

Author:

Wang Qiuyu1,Zhang Shuaipeng2,Xu Xiruo1,Liu Jianguo3,Tan Pengjin3,Wang Chunbo3,Wang Jing3,Li Xin3ORCID,Shang Lihua13ORCID

Affiliation:

1. School of Clinical Medicine, Tsinghua University, Beijing 100084, China

2. Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China

3. Heart Center, The First Hospital of Tsinghua University, Beijing 100016, China

Abstract

Background. Atrial fibrillation (AF) is the most common type of cardiac arrhythmias and a major cause of cardiovascular disease (CVD)-related deaths globally. RNA methylation is the most frequent posttranscriptional modification in the eukaryotic RNAs. Previous studies have demonstrated close associations between the status of RNA methylation and CVD. Methods. We comprehensively evaluated the relationship between RNA methylation and AF. Least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to establish a risk score model in AF. Biological functional analysis was used to explore the relationship between RNA methylation related signatures and immune microenvironment characteristics. Machine learning was used to recognize the outstanding RNA methylation regulators in AF. Results. There was a significant variant of the mRNA expression of RNA methylation regulators in AF. RNA methylation related risk score could predict the onset of AF and closely associated with immune microenvironment features. XG-Boost algorithm and SHAP recognized that NSUN3 and DCPS might play a key role in the development of AF. Meanwhile, NSUN3 and DCPS had potential diagnostic value in AF. Conclusion. RNA methylation regulatory genes are associated with the onset of AF by modulating the immune microenvironment. The nine AF risk-related RNA methylation regulatory gene signature is a potential diagnostic biomarker and therapeutic target for AF.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3