Application of Fiber Grating Sensing in Similar Model Impact Tests of Underground Engineering

Author:

Gao Lei12,Li Zhihao2ORCID,Li Jie12,Wang Zhen1,Jiang Haiming2,Wang Mingyang12

Affiliation:

1. College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. State Key Laboratory of Explosion and Impact and Disaster Prevention and Mitigation, Army Engineering University of PLA, Nanjing, Jiangsu 210007, China

Abstract

To clarify damage or degradation mechanisms of underground shock disturbance of deep caverns, a customized model of a deep cavern to subjected ground shock was employed to simulate the following properties and processes: crustal stress loading, cavern excavation, and ground-shock disturbance loading. The similar model specimen was a cube of 1.3 m length and a size similarity ratio of 1 : 50. A fiber Bragg grating (FBG) strain sensor with multipoint distributions was developed to monitor the distribution of internal strains in the model. Sensors were appropriately arranged and packaged in the similar model of deep rock to determine strain variation in the model under hydrostatic confining pressure, construction dynamic load, and shock dynamic load. This investigation involved high crustal stress simulation, tunnel boring machine (TBM) construction simulation, and deep explosive shock simulation, respectively. The results suggest that the sensors can accurately monitor the strain during the entire process comprising loading, excavation, and shock generation and obtain the distribution of cave strain during excavation and shock generation. The cave strain indicated that the left and right sides of the tunnel both experienced a rapid increase in tensile strain from the top plane shock wave, proportional to the shock force. The mechanism of surrounding rock failure and the occurrence of the V-shaped blasting pit were clarified. In the model test, the following phenomena related to deep tunnel failure were simulated: particle ejection, block collapse, slabbing, and tunnel face collapse. The oscillatory wave was also monitored with FBG sensors. The results demonstrated that FBG strain sensor had good repeatability and could accurately monitor strain change in the different blocks, thus demonstrating considerable potential for use in similar model tests. The model tests conducted in this study can provide important technical reference and support for the construction and protective design of deep caverns.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Statical and Geomechanical Models

2. Development of geomechanic model experiment techniques;S. Tai;Journal of Yangtze River Scientific Research Institute,2001

3. Application study on the geomechanical model experiment techniques;C. Anmin;Chinese Journal of Rock Mechanics and Engineering,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3