An Efficient Radio Resource Allocation Scheme considering Terminal Mobility in Dense mmWave Cellular Networks

Author:

Gui Jinsong1ORCID,Liu Jianglin1ORCID,Zhou Xinran1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

In millimeter wave (mmWave) communication systems, beamforming-enabled directional transmission and network densification are commonly used to reduce high path loss and improve signal coverage quality. The combination of the two approaches will pose a challenge to radio resource allocation, which is especially true when terminals move frequently. The existing works presented some effective solutions for resource allocation in dense mmWave cellular networks, but they assumed that terminals move infrequently. So, these works cannot be directly applied to the dense mmWave cellular networks where terminals move frequently. In this paper, based on the results of the existing beamforming training (BFT) information-aided radio resource allocation algorithm, we propose a relay selection method to select a set of reasonable relays to take over the terminals whose performance deteriorates due to movement, which can ensure that each selected relay is as close as possible to the original performance of the corresponding moved terminal. Then, the resource allocation problem between the Device to Device (D2D) links from the selected relays to the corresponding moved terminals is formulated as a potential game model. By designing the utility function reasonably, the resource allocation results on the D2D links can converge to a Nash equilibrium solution. The simulation results show that the proposed scheme adapts to the scenario with frequent terminal movement, restrains the sharp performance decline caused by terminal movement, and outperforms the existing related algorithms in terms of average energy efficiency and throughput per link.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3