Ultrastructure of a Columbite-Tantalite Mineral from the Zhaojinggou Ta-Nb Deposit in the North China Craton: Direct Evidence of the Formation Mechanism of the Columbite-Group Minerals

Author:

Zuo Yushan1,Gao Zhengxi1,Zuo Lei2,Zhang Peng2,Liu Rui2ORCID,Zhang Qing1,Zhang Tingting1

Affiliation:

1. Inner Mongolia Key Laboratory of Magmatic Mineralization and Ore-Prospecting, Hohhot, Inner Mongolia 010020, China

2. School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China

Abstract

The formation of columbite-group mineral phases in peraluminous granite has not been demonstrated to date. Here, a nanoscale study of the columbite-tantalite mineral in the Zhaojinggou Nb-Ta deposit in North China Craton elucidated its formation mechanism and the role of fluids in Nb-Ta mineralization. Transmission electron microscopy (TEM) analysis of a focused ion beam cut of the columbite-tantalite mineral revealed a comparatively well-ordered mineral structure. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of Nb, Ta, Mn, W, Fe, Sn, and Pb in the columbite-tantalite mineral. Furthermore, detailed TEM images depicted the nanoscale hydrothermal fluid occurring within the columbite-group mineral grain as well as between columbite-tantalite mineral and quartz grains. K, Al, Si, and O were found to be enriched in the hydrothermal fluid that was present between the quartz grains and the columbite-tantalite mineral. It did not react with the mineral grains of the columbite group. The ultrastructure of the columbite-tantalite mineral suggested the columbite-group mineral in the Zhaojinggou Nb-Ta deposit formed during magmatic crystallization rather than from hydrothermal fluids. Furthermore, HR-TEM images provided the first nanoscale observations of the fluid-mediated mineral dissolution and amorphous phase formation. This study also revealed that the mineral dissolution, element transport, and reprecipitation were significantly influenced by the fluid amorphous phase in the Nb-Ta deposits.

Funder

Natural Science Foundation of Inner Mongolia

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3