Artificial Intelligence Algorithm-Based MRI for Differentiation Diagnosis of Prostate Cancer

Author:

Luo Rui1ORCID,Zeng Qingxiang2ORCID,Chen Huashan1ORCID

Affiliation:

1. Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, 441021 Hubei, China

2. Department of Group Work, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Sciences, Xiangyang, 441021 Hubei, China

Abstract

The rapid increase in prostate cancer (PCa) patients is similar to that of benign prostatic hyperplasia (BPH) patients, but the treatments are quite different. In this research, magnetic resonance imaging (MRI) images under the weighted low-rank matrix restoration algorithm (RLRE) were utilized to differentiate PCa from BPH. The diagnostic effects of different sequences of MRI images were evaluated to provide a more effective examination method for the clinical differential diagnosis of PCa and BPH. 150 patients with suspected PCa were taken as the research objects. Pathological examination revealed that 137 patients had PCa and 13 patients had BPH. The pathological results were the gold standard and were compared with the MRI results of different sequences. Therefore, the accuracy of the MRI results was evaluated. The results showed that with the rise of Gaussian noise, the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of all three algorithms gradually decreased, but the PSNR and SSIM of the RLRE algorithm were always higher than those of the RL and BM3D algorithms ( P < 0.05 ). The sensitivity (97.08%), specificity (92.31%), accuracy (96.67%), and consistency (0.678) of the dynamic contrast enhancement (DCE) sequence were higher than those of the plain scan (86.13%, 69.23%, 84.67%, and 0.469, respectively). In conclusion, the RLRE algorithm could promote the resolution of MRI images and improve the display effect. DCE could better differentiate PCa from BPH, had great clinical application value, and was worthy of clinical promotion.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3