Integration of a Quantum Voting Scheme into Grayscale Images Using the Novel Enhanced Quantum Representation and Qiskit Framework

Author:

Tudorache Alexandru-Gabriel1ORCID,Manta Vasile1ORCID,Caraiman Simona1ORCID

Affiliation:

1. Department of Computer Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 27A, 700050 Iasi, Romania

Abstract

This paper illustrates the way a proposed quantum voting scheme can be designed in combination with a steganography technique called Least Significant Bit (LSB), by modifying a small number of pixels in multiple grayscale images. It combines the voting scheme with the novel enhanced quantum representation (NEQR) of an image, where the LSBs of these pixels represent the vote for each entity that takes part in the voting process. A server is also used, not only to count but also to guarantee the integrity of the votes (which is done inherently, by its design and quantum properties). The superdense coding circuit is part of the design, allowing each voter to use one qubit in order to transmit two classical bits (the vote value). The selected platform for testing this scheme is IBM Quantum Experience, together with the open-source framework called Qiskit (written in Python). This framework allows users to create various quantum circuits, using a wide selection of quantum gates, and then to simulate them, either on a simulator or on a real quantum device. The quantum circuits and the measurement results are also presented in this paper.

Funder

“Gheorghe Asachi” Technical University of Iasi

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Reference38 articles.

1. Towards quantum-based privacy and voting

2. Quantum voting scheme based on conjugate coding;T. Okamoto;NTT Technical Review,2008

3. A simple quantum voting scheme with multi-qubit entanglement

4. Quantum protocols for anonymous voting and surveying;J. A. Vaccaro;Physical Review A,2007

5. Quantum anonymous voting for continuous variables;L. Jiang;Physical Review A,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3