Downregulated Copper Homeostasis-Related Gene FOXO1 as a Novel Indicator for the Prognosis and Immune Response of Breast Cancer

Author:

Zeng Rong1ORCID,Peng Bi2ORCID,Peng Emin23ORCID

Affiliation:

1. General Surgery Department, Second Xiangya Hospital, Central South University, Changsha 410008, China

2. Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China

3. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China

Abstract

Copper (Cu) is one of the essential microelements for all living systems. Studies have illustrated the biological significance of Cu homeostasis in human cancers, including breast cancer (BRCA). Nevertheless, the detailed roles of Cu homeostasis in BRCA need to be further explored. Here, we identified a downregulated Cu homeostasis-related gene FOXO1 and investigated the potential functions of FOXO1 in BRCA through several bioinformation databases. The BRCA patients with high level of FOXO1 displayed favorable prognostic values. Subsequently, enrichment analysis of FOXO1 coexpressed genes revealed that the top three enriched KEGG pathways were spliceosome, oxidative phosphorylation, and ribosome. Immunoinfiltration analysis indicated that aberrantly expressed FOXO1 showed positive correlations with the subcellular infiltration of macrophages and neutrophils in BRCA. Moreover, FOXO1 expression was positively associated with multiple immune checkpoints, such as sialic acid-binding immunoglobulin-like lectin 15 (SIGLEC15), indoleamine 2,3-dioxygenase 1 (IDO1), programmed cell death 1 ligand 1 (PD-L1/CD274), hepatitis A virus cellular receptor 2 (HAVCR2), programmed cell death 1 (PDCD1), cytotoxic T lymphocyte antigen 4 (CTLA4), and programmed cell death 1 ligand 2 (PDCD1LG2). Overall, these findings would deepen our understanding of FOXO1 in BRCA prognosis and immunotherapy response, representing a promising therapeutic strategy for BRCA patients.

Funder

Hunan Development and Reform Investment

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3