Deblurring Method of Face Recognition AI Technology Based on Deep Learning

Author:

Li Weilong1ORCID,Li Jie2,Zhou Junhui3

Affiliation:

1. College of Educational Information Technology, Hunan Vocational College for Nationalities, Yueyang 414000, Hunan, China

2. Organization and Personnel Department, Yueyang Vocational and Technical College, Yueyang 414000, Hunan, China

3. Information Construction and Management Center, Hunan Vocational College for Nationalities, Yueyang 414000, Hunan, China

Abstract

As a common method of deep learning, a convolutional neural network (CNN) shows excellent performance in face recognition. The features extracted by traditional face recognition methods are greatly influenced by subjective factors and are time-consuming and laborious. In addition, these images are susceptible to illumination, expression, occlusion, posture, and other factors, which bring a lot of interference to the computer face recognition and increase recognition difficulty. Deep learning is the most important technical means in the field of computer vision. The participation of this technology reduces manual participation and can identify the identity of visitors from multiple aspects. This study, based on the introduction at all levels and on the fundamental principle of the colloidal neural network, combines the basic model and the common exploitation methods of aspects to make a model of a combination of multiple aspects. Then, an improved CNN-based multifeature fusion face recognition model is proposed, and the effectiveness of the model in face feature extraction is verified by experiments. With the experimental results, the identification rate for the ORL and Yale data sets is 98.2% and 98.8%, respectively. Accordingly, an online face detection system and recognition system based on the combination of element models are designed. The system can obtain dynamic facial recognition and meet the recognition rate of the design requirements. The system is training four detection models and online recognition, and the test results show that the noise component model has the highest recognition rate, and the recognition rate has improved by 13% compared with the baseline capacity, further verifying that a model of a combination of features can achieve more effectively.

Publisher

Hindawi Limited

Subject

General Computer Science

Reference19 articles.

1. Facial recognition processing using uniform pattern histogram with AI in multimedia applications;C. N. Vanitha;Solid State Technology,2021

2. A survey on deep learning in medical image analysis

3. Supervised Speech Separation Based on Deep Learning: An Overview

4. A Survey on Healthcare Data: A Security Perspective

5. Driver Face Recognition: Anti-Theft System

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3