Affiliation:
1. Container Supply Chain Tech. Engineering Research Center, Shanghai Maritime University, Shanghai 201306, China
2. Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
Abstract
With the development of port automation, most operational fields utilizing heavy equipment have gradually become unmanned. It is therefore imperative to monitor these fields in an effective and real-time manner. In this paper, a fast human-detection algorithm is proposed based on image processing. To speed up the detection process, the optimized histograms of oriented gradients (HOG) algorithm that can avoid the large number of double calculations of the original HOG and ignore insignificant features is used to describe the contour of the human body in real time. Based on the HOG features, using a training sample set consisting of scene images of a bulk port, a support vector machine (SVM) classifier combined with the AdaBoost classifier is trained to detect human. Finally, the results of the human detection experiments on Tianjin Port show that the accuracy of the proposed optimized algorithm has roughly the same accuracy as a traditional algorithm, while the proposed algorithm only takes 1/7 the amount of time. The accuracy and computing time of the proposed fast human-detection algorithm were verified to meet the security requirements of unmanned port areas.
Funder
Shanghai Municipal Education Commission
Subject
General Engineering,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献